
DRMAA v2 - The Next Generation

Peter Tröger
Humboldt University of Berlin
peter@troeger.eu

DRMAA-WG Co-Chair

DRMAAv2 | HPC Workshop PT 2009

Past

• GGF / OGF specification since 2001

• Job submission and control in a cluster / grid system

• Application portability between different DRM systems

• Simple API design, implementation as local library

• Leave room for areas of disagrement

• Different DRMAA 1.0 standardization documents

• June 2004 - DRMAA 1.0 proposed recommendation (GFD.22)

• 2008 - Shift to IDL based root specification, some clarifications (GFD.130)

• Official language binding documents for C, Java, Python

• Experience reports, tutorials, unofficial language bindings for Perl, Ruby and C#

2

DRMAAv2 | HPC Workshop PT 2009

Today

• C-library implementations for all major DRM systems, some also with Java binding

• Biggest user base with SGE implementation

• Some famous applications: MOAB, Mathematica integration package, SAGA

• Recent collection of user demands and wishes

• Public survey, SUN customer feedback, DRMAA implementation experiences

• Design of DRMAA v2 happens now ! (Deadline: December 2009)
3

DRMAAv2 | HPC Workshop PT 2009

DRMAA v1 Issues

• Fix C-centric API design

• Start from IDL version of DRMAA v1

• Make the API really OO-friendly, but still language-independent

• Add new features

• Resource monitoring, session handling, job objects, ...

• Remove obsolete / never implemented features

• Date / time handling, ...

• Modify existing features for better usability / DRMS compatibility

• Job synchronization, state model, job monitoring, ...

4

DRMAAv2 | HPC Workshop PT 2009

IDL-based Language Binding

• All behavioral aspects in the root spec

• API feature set, functional behavior, error conditions, multithreading issues

• Language binding provides syntactical mapping only (Example: GFD.143)

• Interfaces are mapped to classes (OO languages) or can be flattened (C language)

5

DRMAAv2 | HPC Workshop PT 2009

DRMAA v2 Layout

6

module DRMAA2{

interface SessionManager

interface JobSession

interface MonitoringSession

interface JobTemplate

interface Job

interface JobInfo

...

}

module DRMAA{

interface Session

interface JobTemplate

interface JobInfo

...

}

DRMAAv2 | HPC Workshop PT 2009

DRMAA v2 Session Management

7

interface SessionManager{
readonly attribute string drmsInfo;
readonly attribute Version version;
JobSession createJobSession(in string sessionName, in string contactString)
void closeJobSession(in JobSession s)
void destroyJobSession(in string sessionName)
string[] getJobSessions()
MonitoringSession createMonitoringSession (in string contactString)
void closeMonitoringSession(in MonitoringSession s)

};

• Create multiple sessions to one / more DRM systems at the same time

• Distinguishing between job management and machine monitoring

• JobSession instances are restartable by their sessionName

• Design of MonitoringSession interface is still unclear

• Intended for ‚global view‘ of the DRM system, regardless of submission session

DRMAAv2 | HPC Workshop PT 2009

DRMAA v2 Job Session

8

interface DrmaaCallback {
 void notify(in DrmaaNotification event)

interface JobSession{
 readonly attribute string contact;
 void registerEventNotification(in DrmaaCallback callback)

raises UnsupportedFeatureExeption,
 JobTemplate createJobTemplate()
 void deleteJobTemplate(in DRMAA::JobTemplate jobTemplate)
 Job runJob(in DRMAA::JobTemplate jobTemplate)
 sequence<Job> runBulkJobs(...)
 sequence<Job> waitAnyStarted(in sequence<Job> jobs, in long long timeout)
 sequence<Job> waitAnyTerminated(in sequence<Job> jobs, in long long timeout)
};

• Optional support for event push notification

• waitAnyStarted(): Wait for one of the „start states“ to happen

• RUNNING, *_SUSPENDED

• waitAnyTerminated(): Wait for FAILED / DONE to happen

DRMAAv2 | HPC Workshop PT 2009

DRMAA v2 Job

9

interface Job {
void suspend()
void resume()
void hold()
void release()
void terminate()
JobState getState(out native subState)
void waitStarted(in long long timeout)
void waitTerminated(in long long timeout)
JobInfo getInfo()

};

• New Job object as root concept (still represented by string in C-binding)

• drmaa_control(string, JobControlAction) replaced by dedicated methods

• waitStarted() and waitTerminated() as on JobSession level

• New subState concept for implementation-specific state information

• Explicit fetching of job information (instead of implicit drmaa_wait() result)

DRMAAv2 | HPC Workshop PT 2009

DRMAA v2 Job Info

10

interface JobInfo {
readonly attribute Dictionary resourceUsage;
readonly attribute boolean hasExited;
readonly attribute long exitStatus;
... [old DRMAA1 job information] ...
readonly attribute JobState jobState;
readonly attribute string jobSubState;
readonly attribute string masterMachine;
readonly attribute string[] slaveMachines;
readonly attribute string submissionMachine;
readonly attribute string jobOwner;
// amount of time since job was started
readonly attribute long wallclockTime;
// amount of time remaining until the job will be terminated
readonly attribute long wallclockLimit;
// amount of CPU seconds consumed
readonly attribute long cpuTime;
// and so on for submission time, dispatch time, start time, finish time,
// memory usage and limits
...

};

DRMAAv2 | HPC Workshop PT 2009

Other Decisions

• Some removals (different hold states, partial time stamps) and renamings

• Some things are still rejected - security, job signalling, pending job changing

• Still huge list of open issues

11

• Supported job and machine
monitoring attributes

• Maybe DRM monitoring
(e.g. list of hosts, queues)

• Possible new states
(e.g. re-scheduled)

• File transfer capabilities

• Resource requirement
specification in job template

• More job template macros

• Workflow support

• DRMAA JSDL profile

• ...

DRMAAv2 | HPC Workshop PT 2009

Participation

• Please talk with us

• Subscribe to mailing list (check www.drmaa.org)

• Bi-weekly phone conference (Tuesday, 19:00 UTC)

• @Sun: Daniel Templeton, Daniel Gruber

• We need

• Fresh ideas (still)

• API design proposals for unsolved issues

• Check for DRMS implementability (LSF, PBS, or EGEE, anybody ?)

• Check for language binding issues

• Your implementation story

12

