

drmaa-wg@ogf.org 1

Distributed Resource
Management
Application API (DRMAA)
Working Group

Peter Tröger, Humboldt University (editor)
Daniel Templeton, Sun Microsystems

Hrabri Rajic, Intel Americas Inc.
Roger Brobst, Cadence Design Systems

Distributed Resource Management Application API 2.0

Status of This Document

This document provides information to the Grid community. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2008). All Rights Reserved.

Abstract

This document describes the common base for the Distributed Resource
Management Application API v2.0 (DRMAA) bindings for procedural and object-
oriented languages.

Table of Contents
… (LEFT OUT FOR EASIER CHANGE TRACKING) …

 Peter Tröger � 7.7.09 00:10

 Peter Tröger � 3.9.08 13:59

Kommentar: TODO: According to
survey, DRMAA2 should be aligned to
OGSA-BES, SAGA, and Windows HPC.
The cross-comparison is still pending.

Kommentar: TODO: #6275 – Define all
default values.

drmaa-wg@ogf.org 2

1 Introduction
This document gives an IDL description for the DRMAA interface. The specification
provided by this document is completely language-independent, even though some
of the examples are given in Java. Adopters of this specification are expected to
derive a language-binding specification (as described in Section 2.2), which can then
be centrally published by the DRMAA working group. This ensures portability for
DRMAA applications in one programming language, and ensures consistent API
semantics over all possible DRMAA language bindings.

1.1 Notational Conventions

In this document, the following conventions are used:

• IDL language elements and definitions are represented in a fixed-
width font.
• References to IDL language elements and definitions are represented in italics.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY” and “OPTIONAL” are to be
interpreted as described in RFC-2119 [RFC 2119].

The document describes the DRMAA interface semantics with the help of OMG IDL
[OMG IDL]. It includes a set of overall rules for the creation of specific language
bindings for the given specification. Specific examples are given for the Java
language. These examples are not normative.

1.2 Related Work

There are other relevant OGF standards in the area of job submission and
monitoring. An in-depth comparison and positioning of DRMAA v1.0 is provided by a
conference publication [IJGUC08].

 Peter Tröger � 3.9.08 14:04
Kommentar: TODO: Describe relation to
GFD.130 / 133

drmaa-wg@ogf.org 3

2 General Concepts
2.1 Design Decisions

An effort has been made to choose design patterns that are not unique to a specific
language. However, in some cases, various languages disagree over some points.
In those cases, the most meritous approach was taken, irrespective of language.
The following text bases on the terminology of OMG IDL. For this reason, all
operational semantics are described in terms of interfaces and not of classes. This
concept ensures the possibility to map the described operational semantics to a
variety of object-oriented, and even procedural, languages. The usage of a class
concept depends on the specific language-mapping rules.
The DRMAA specification assumes that destination languages for a binding typically
support the concepts of exceptions. If a destination language does not support the
notion of exceptions (like ANSI C), the language binding SHOULD map error
conditions to an appropriate consistent concept. A language binding MAY chose to
model exceptions as numeric error code return values, and return values as
additional output parameters of the operation.

2.2 IDL language mapping

Language binding documents based on this specification MUST define a mapping
between the IDL constructs used in this specification and their specific language
constructs. A language binding SHOULD NOT rely itself completely on the OMG
language mapping documents available for many programming languages. It must
be considered that the OMG mappings bring a huge overhead of irrelevant CORBA-
related mapping rules into the specification. Therefore it must be carefully decided
whether a binding decision reflects a natural and simple mapping of the intended
purpose for the DRMAA interfaces. In most situations it SHOULD be enough to reuse
value type mappings only and to define custom mappings for the reference types.

The language binding MUST use the described concept mapping in a consistent
manner for the overall specification.

It may be the case that IDL constructs do not map directly to an according language
construct. In this case it MUST be ensured that the according construct in the
particular language retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, Boolean, long) MUST operate in a pass-
by-value mode. An according language binding must ensure that this behavior is
always fulfilled. For non-scalar attributes, the language binding MUST specify a
consistent access strategy for all these attributes – either pass-by-value or pass-by-
reference – according to the use cases of language binding implementations.

Languages without an explicit notion of enumerations MAY map the IDL enumeration
values to constant class members, enabled by the distinct naming of enumeration
values.
 Peter Tröger � 25.6.09 19:49

Kommentar: TODO: #6277 – Relax this
formulation to ease up the Python binding.

drmaa-wg@ogf.org 4

Some attributes and operation parameters are scoped (“DRMAA::”), in order to avoid
naming clashes in case-insensitive programming languages. Language bindings for
case-sensitive languages SHOULD omit this explicit scoping.

This specification tries to consider the possibility of a Remote Procedure Call
scenario in a DRMAA-conformant language mapping. It SHOULD therefore be
ensured that the programming language type for an IDL valuetype definition supports
the serialization and comparison of valuetype instances. These capabilities SHOULD
be accomplished through whatever mechanism is most natural for the specific
programming language.

Java binding example:

IDL Java language

module definition package keyword

interface definition public abstract interface
definition

enum definition with enumeration
members

Enumeration members become Java
int constants in the surrounding
interface definition

string type java.lang.String

long type int

long long type long

const type public static final

boolean type boolean

[readonly] attribute type Getter [and setter] methods in
JavaBeansTM style, boolean readonly
attribute names are prefixed with “get”.

exception type Class definition, derived from
java.lang.Exception

raises clause throws clause

valuetype definition public class definition, may
additionally implement the Cloneable,
Serializable, and Compareable
interfaces

The DRMAA specification defines specialized custom types as new value types, in
order to express their intended semantics: OrderedStringList, StringList, Dictionary
and TimeAmount. The language-binding author SHOULD replace these type

drmaa-wg@ogf.org 5

definitions directly with semantically equal references or value types from the
according language. This MAY include the creation of new complex language types
for one or more of the above concepts, depending on the context.

Java binding example:

IDL Java

StringList java.util.Set

OrderedStringList java.util.List

TimeAmount long

Dictionary java.util.Map

3 Changes in comparison to GFD.130 (DRMAA 1.0)

• The module name was change to DRMAA2, in order to intentionally break
backward compatibility of the interface.

• The differentiation between the system hold, user hold, and system / user hold
job states was removed (conf. call Jan 20th 2009). There is only one hold state
now.

• A job can now change its state from one of the SUSPENDED states to the
QUEUED_ACTIVE state (conf. call Jan 20th 2009, solves issue #2788).

• The job state UNDETERMINED is now clearer defined. It expressed a
permanent issue, meaning that the job state will not change by just waiting.
Temporary problems in the detection of the job state are now expressed by
the TryLaterException (conf. call Feb 5th 2009, solves issue #2783).

• The concept of a factory in GFD.130 was removed (solves issue #6276).
• The getState() function now also returns job subState information. This is

intended as additional information for the given DRMAA job state, and can be
used for expressing the hold state differentiation from DRMAA 1.0 (conf. call
Mar 31st 2009).

• The PartialTimestamp functionality was completely removed. Absolute date
and time values are now expressed as RFC822 conformant string (conf. call
Mar 31st 2009).

• The description of the FAILED state was extended to support a more specific
differentiation between different job failure reasons. The new subState feature
allows the DRMAA implementation to provide better information, if available.
There was no portable way of standardizing extended failure information in a
better way. (conf. call May 12th 2009, solves issue #5875)

• The jobCategory attribute in the job template was renamed to
configurationName, in order express the administrator-side static configuration
aspect behind this attribute. The description text was clarified accordingly. The
DRMAA home page is planned to contain a list of recommend
configurationName strings and their meaning. The adoption in the field might
then provide a better understanding of which configuration names can become
part of the standard. (F2F meeting July 2009, solves issue #5853)

drmaa-wg@ogf.org 6

• The nativeSpecification attribute in the job template was renamed to
nativeOptions for better understanding. The description text is now also more
specific. (F2F meeting July 2009)

• Version 2.0 of DRMAA supports restartable sessions by the newly introduced
SessionManager interface. It allows creating multiple concurrent sessions for
job submission (solves issue #2821), which can be restarted by their
generated session name (solves issue #2820). Session.init() and
Session.exit() functionalities are moved to the according session creation and
closing routines. The descriptions were fixed accordingly (solves issue #2822).
The AlreadyActiveSession error was removed. (F2F meeting July 2009)

• The drmaaImplementation attribute was removed, since it was redundant to
the drmsInfo attribute. This one is now available in the new SessionManager
interface. (F2F meeting July 2009)

• DRMAA2 replaces the identification of jobs by strings with Job objects. This
enables a tighter integration of job meta-data and identity, for the price of
reduced performance in (so far not existing) DRMAA RPC scenarios. The
former DRMAA control() with the JobControlAction structure is now split up
into dedicated functions (such as hold() and release()) on the Job object.
The former HoldInconsistentStateException,
ReleaseInconsistentStateException, ResumeInconsistentStateException, and
SuspendInconsistentStateException from DRMAA v1.0 are now expressed as
single InconsistentStateException with different meaning per dedicated
function. String list for job identifiers are replaced by Job object lists (F2F
meeting July 2009)

• The binding of job template attribute names and exception names to strings
was removed from the main specification. Language bindings such as for the
C programming languages have to define their own mapping. It is
recommended to keep string identifiers from DRMAA 1.0 as far as possible.

• The original separation between synchronize() and wait() was replaced by a
complete new synchronization semantic in the API. DRMAA2 has now only
two wait() methods - one on JobSession level for all jobs of a session, and one
on Job level. The job-level function allows waiting for one of a given set of job
states to occur (solves issue #5880). One example is to wait for the starting of
a job (solves issue #2838). Waiting for any kind of state change is expressed
by an according constant. The function returns its own job object again, in
order to allow chaining, e.g. job.wait(JobStatus.RUNNING).hold().
The session-level waitAny() implements the old DRMAA
wait(SESSION_ANY).
The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait() / JobSession.waitAny()
call with the according state set. The result is a more condensed and
responsive API, were the application can decide to keep the user informed
during synchronization on a set of jobs. DRMAA library implementations
should also become easier to design, since the danger of multithreading side
effects inside the DRMAA API is minimized by this change.
As a side effect, JOB_IDS_SESSION_ANY and JOB_IDS_SESSION_ALL
are no longer needed. The special consideration of a partial failures during
SESSION_ALL wait activities is also no longer necessary (F2F meeting July
2009)

• Issue #5877 (support for direct job signaling) was rejected.

drmaa-wg@ogf.org 7

• Issue #2782 (change attributes of submitted, but pending jobs) was rejected.
• DRMAA2 supports the monitoring of execution resources through the

MonitoringSession interface. The JobInfo interface was heavily extended for
providing more information (solves issue #2827).

• The DRMAA JobSession interface can additionally support a callback facility,
where the DRMAA library informs the application about state change events in
the DRM system.

drmaa-wg@ogf.org 8

4 The DRMAA2 API

The DRMAA interfaces and structures are encapsulated by a naming scope, which
avoids conflicts with other API’s used in the same application.

Language binding authors MUST map the IDL module encapsulation to an according
package or namespace concept and MAY change the module name according to
programming language conventions.

The following text shows the complete IDL description of the DRMAA2 interface.
Later chapters in this document explain the different parts.

module DRMAA2{
// unbounded native ordered string list
valuetype OrderedStringList sequence<string>;
// unbounded native string list
valuetype StringList sequence<string>;
// dictionary type, for unbounded key-value pair storage
valuetype Dictionary sequence< sequence<string,2> >;
// amount of time, at least with a resolution to seconds
valuetype TimeAmount long long;

// Data Types (Section 5)

enum JobState {
 UNDETERMINED, QUEUED_ACTIVE, HOLD, RUNNING,
 SYSTEM_SUSPENDED, USER_SUSPENDED,USER_SYSTEM_SUSPENDED,
 DONE, FAILED
};

const sequence<JobState> ANY_STATE=[];
const long long TIMEOUT_WAIT_FOREVER = -1;
const long long TIMEOUT_NO_WAIT = 0;

enum JobSubmissionState {
HOLD_STATE, ACTIVE_STATE

};

enum DrmaaEvent {
NEW_STATE_UNDETERMINED, NEW_STATE_QUEUED_ACTIVE,
NEW_STATE_HOLD, NEW_STATE_RUNNING,
NEW_STATE_SYSTEM_SUSPENDED, NEW_STATE_USER_SUSPENDED,
NEW_STATE_USER_SYSTEM_SUSPENDED, NEW_STATE_DONE,
NEW_STATE_FAILED};

valuetype DrmaaNotification {
 readonly attribute DrmaaEvent event;
 readonly attribute Job job;
};

drmaa-wg@ogf.org 9

valuetype FileTransferMode {
 attribute boolean transferInputStream;
 attribute boolean transferOutputStream;
 attribute boolean transferErrorStream;
};

valuetype Version {
 readonly attribute long major;
 readonly attribute long minor;
};

// Exceptions (Section 6)

exception AuthorizationException {string message;};
exception ConflictingAttributeValuesException
 {string message;};
exception DefaultContactStringException {string message;};
exception DeniedByDrmException {string message;};
exception DrmCommunicationException {string message;};
exception DrmsExitException {string message;};
exception DrmsInitException {string message;};
exception ExitTimeoutException {string message;};
exception InconsistentStateException {string message;};
exception IllegalStateException {string message;};
exception InternalException {string message;};
exception InvalidArgumentException {string message;};
exception InvalidAttributeFormatException {string message;};
exception InvalidAttributeValueException {string message;};
exception InvalidContactStringException {string message;};
exception InvalidJobException {string message;};
exception InvalidJobTemplateException {string message;};
exception NoActiveSessionException {string message;};
exception NoDefaultContactStringSelectedException
 {string message;};
exception OutOfMemoryException {string message;};
exception TryLaterException {string message;};
exception UnsupportedAttributeException {string message;};

// Session Manager (Section 7)

interface SessionManager{
 readonly attribute string drmsInfo;
 readonly attribute Version version;

 JobSession createJobSession(in string sessionName,
 in string contactString)
 raises (???);
 void closeJobSession(in JobSession s)
 raises (???);
 void destroyJobSession(in string sessionName)

drmaa-wg@ogf.org 10

 raises (???);
 string[] getJobSessions()
 raises (???);
 MonitoringSession createMonitoringSession (in string
contactString)
 raises (???);
 void closeMonitoringSession(in MonitoringSession s)
 raises (???);
};

// Job Sessions (Section 8)

interface DrmaaCallback {
 void notify(in DrmaaNotification notification)
};

interface JobSession{
readonly attribute string contact;

JobTemplate createJobTemplate()
 raises (DrmCommunicationException,
 NoActiveSessionException,
 OutOfMemoryException,
 AuthorizationException,
 InternalException);

void deleteJobTemplate(in DRMAA::JobTemplate jobTemplate)
 raises (DrmCommunicationException,
 NoActiveSessionException,
 OutOfMemoryException,
 AuthorizationException,
 InvalidArgumentException,
 InvalidJobTemplateException,
 InternalException);

Job runJob(in DRMAA::JobTemplate jobTemplate)
 raises (TryLaterException,
 DeniedByDrmException,
 DrmCommunicationException,
 AuthorizationException,
 InvalidJobTemplateException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

sequence<Job> runBulkJobs(
 in DRMAA::JobTemplate jobTemplate,
 in long beginIndex,
 in long endIndex,
 in long step)

drmaa-wg@ogf.org 11

 raises (TryLaterException,
 DeniedByDrmException,
 DrmCommunicationException,
 AuthorizationException,
 InvalidJobTemplateException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

sequence<Job> waitAnyStarted(in sequence<Job> jobs,
 in long long timeout)

 raises (DrmCommunicationException,
 AuthorizationException,
 ExitTimeoutException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

sequence<Job> waitAnyTerminated(in sequence<Job> jobs,
 in long long timeout)

 raises (DrmCommunicationException,
 AuthorizationException,
 ExitTimeoutException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

void registerEventNotification(in DrmaaCallback callback)
 raises (UnsupportedFeatureExeption,);

// Job template (Section 9)

interface JobTemplate{
 const string HOME_DIRECTORY = "$drmaa_hd_ph$";
 const string WORKING_DIRECTORY = "$drmaa_wd_ph$";
 const string PARAMETRIC_INDEX = "$drmaa_incr_ph$";
 attribute string remoteCommand;
 attribute OrderedStringList args;
 attribute DRMAA::JobSubmissionState jobSubmissionState;
 attribute Dictionary jobEnvironment;
 attribute string workingDirectory;
 attribute string configurationName;

drmaa-wg@ogf.org 12

 attribute string nativeOptions;
 attribute StringList email;
 attribute boolean blockEmail;
 attribute string startTime;
 attribute string jobName;
 attribute string inputPath;
 attribute string outputPath;
 attribute string errorPath;
 attribute boolean joinFiles;
 attribute FileTransferMode transferFiles;
 attribute string deadlineTime;
 attribute TimeAmount hardWallclockTimeLimit;
 attribute TimeAmount softWallClockTimeLimit;
 attribute TimeAmount hardRunDurationLimit;
 attribute TimeAmount softRunDurationLimit;
 readonly attribute StringList attributeNames;
 …
 [language-specific operations for implementation-specific attributes]
 …

// Job (Section 10)

interface Job{
void suspend() // suspend a running job
 raises (DrmCommunicationException,
 AuthorizationException,
 InconsistentStateException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

void resume() // resume a suspended job
 raises (DrmCommunicationException,
 AuthorizationException,
 InconsistentStateException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

void hold() // put a queued job on hold
 raises (DrmCommunicationException,
 AuthorizationException,
 InconsistentStateException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,

drmaa-wg@ogf.org 13

 InternalException);

void release() // release a job on hold
 raises (DrmCommunicationException,
 AuthorizationException,
 InconsistentStateException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

void terminate() // terminate a running job
 raises (DrmCommunicationException,
 AuthorizationException,
 InconsistentStateException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

JobState getState(out native subState)
 raises (DrmCommunicationException,
 AuthorizationException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InternalException);

JobInfo getInfo()
 raises (DrmCommunicationException,
 AuthorizationException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InternalException);

 void waitStarted(in long long timeout)
 void waitTerminated(in long long timeout)

};

// Extended information about a job (Section 11)

interface JobInfo {
 // unique job identifier
 readonly attribute string jobId;
 // ???
 readonly attribute Dictionary resourceUsage;
 // ???

drmaa-wg@ogf.org 14

 readonly attribute boolean hasExited;
 // ???
 readonly attribute long exitStatus;
 // ???
 readonly attribute boolean hasSignaled;
 // ???
 readonly attribute string terminatingSignal;
 // ???
 readonly attribute boolean hasCoreDump;
 // ???
 readonly attribute boolean wasAborted;
 // state of the job according to DRMAA model
 readonly attribute JobState jobState;
 // DRM-dependent concretization of jobState
 readonly attribute string jobSubState;
 // host name of the execution host
 readonly attribute string masterMachine;
 // participating hosts in a parallel job
 // beside the masterMachine
 readonly attribute string[] slaveMachines;
 // host name of the submission host
 readonly attribute string submissionMachine;
 // username of the job owner
 readonly attribute string jobOwner;
 // amount of time since job was started
 readonly attribute long wallclockTime;
 // remaining time until job termination
 readonly attribute long wallclockLimit;
 // amount of CPU seconds consumed
 readonly attribute long cpuTime;
 // date and time when the job was submitted
 readonly attribute long submissionTime;
 // date and time when the job was dispatched (???)
 readonly attribute long submissionTime;
 // date and time when the job started first execution
 readonly attribute long startTime;
 // date and time when the job finished execution
 readonly attribute long finishTime;

// Support for machine monitoring (Section 12)

interface MonitoringSessions{

 //// attributes on DRM system level ////
readonly attribute string[] drmVersionString;

 //// attributes on session level ////
readonly attribute string[] drmMachineNames;

 //// attributes on machine level ////

Peter Tröger � 28.9.09 21:30
Kommentar: Consider other standards
here – CIM, RUS-WG, JSDL …

drmaa-wg@ogf.org 15

 // number of processor sockets in the machine
 int machineSockets(in string machineName);
 // number of CPU cores per socket, ASMP ?
 int machineCoresPerSocket(in string machineName);
 // Normalized (?) load on the core, -1 for accumulated
 int machineLoad(in string machineName, in long coreNumber);
 // Physical memory installed in the machine
 int machinePhysMemory(in string machineName);
 // virtual memory available in the machine
 int machineVirtMemory(in string machineName);
 // Operating system on the machine, based on
 // on some standardized enumeration from somewhere else
 string machineOperatingSystem(in string machineName)
 // Processor architecture the machine, based
 // on some standardized enumeration from somewhere else
 string machineArchitecture(in string machineName)

 };
}

drmaa-wg@ogf.org 16

5 Data Types

5.1 JobState enumeration

The JobState enumeration is used as return value type for fetching the general job
status in the DRMS. The elements have the following meaning:

• JobState:UNDETERMINED: The job status cannot be determined. This is a
permanent issue, not being solvable by querying again for the job state.

• JobState:QUEUED_ACTIVE: The job is queued for being scheduled and
executed.

• JobState:HOLD: The job has been placed on hold by the system, the
administrator, or the user.

• JobState:RUNNING: The job is running in the DRM system.
• JobState:SYSTEM_SUSPENDED: The job has been suspended by the system

or the administrator.
• JobState:USER_SUSPENDED: The job has been suspended by a user.
• JobState:USER_SYSTEM_SUSPENDED: The job has been suspended by both

the system or administrator and a user.
• JobState:DONE: The job finished without an error.
• JobState:FAILED: The job exited abnormally before finishing.

 A DRMAA language binding implementation is not required to be able to return all of
the job state values in the JobState enumeration. If a given job state has no
representation in the underlying DRMS, the DRMAA implementation MAY ignore that
job state value. All DRMAA implementations MUST, however, define the JobState
enumeration, and the definition MUST include all job state values, including those for
unused job states. An implementation SHOULD NOT return any job state value
other than those defined in the JobState enumeration.

The status values relate to the DRMAA job state transition model:

Valuator -> Queued_Active
Valuator -> Hold
Valuator -> Rejected
Queued_Active <-> Hold
Queued_Active -> Running
Running <-> System_Suspended
Running <-> User_Suspended
Running <-> User-System_Suspended
Running -> Failed
System_Suspended -> Failed
User_Suspended -> Failed
User-System_Suspended -> Failed
System_Suspended -> Queued_Active
User_Suspended -> Queued_Active
User-System_Suspended -> Queued_Active
Running -> Done

Peter Tröger � 29.9.09 16:40
Kommentar: The introduction of a “re-
scheduled” state was proposed in one of
the telcos. Needs cross-check with DRM
systems.

drmaa-wg@ogf.org 17

Undetermined

Figure 1: DRMAA Job State Transition Diagram

5.2 JobSubmissionState enumeration

The JobSubmissionState enumeration is used as the type of the
JobTemplate::jobSubmissionState interface attribute. In the context of the job
template, the enumeration values have the following meaning:

• HOLD_STATE: The job may be queued, but it is not eligible to run.
• ACTIVE_STATE: The job is eligible to run.

5.3 FileTransferMode value type

The FileTransferMode value-type is used by a JobTemplate instance to indicate the
value for the transferFiles attribute. The type contains three attributes, which
determine the streams that will be staged in or out.

 transferInputStream

This attribute defines whether to transfer an input stream file. If this attribute contains
true, the transferinputStream attribute of the corresponding job template SHALL be
treated as the source from which the input file should be copied.

 transferOutputStream

This attribute defines whether to transfer an output stream file. If this attribute
contains true, the transferOutputStream attribute of the corresponding job template
SHALL be treated as the destination to which the output file should be copied.

 transferErrorStream

This attribute defines whether to transfer an error stream file. If this attribute contains
true, the transferErrorStream attribute of the corresponding job template SHALL be
treated as the destination to which the error file should be copied.

5.4 Version value type

The Version value type is a holding structure for the major and minor version
numbers of the DRMAA language binding implementation as contained in the version
attribute of the SessionManager interface. The string of a Version instance MUST be
of the form “<major>.<minor>”.

 major

This attribute SHALL contain the major version number.

Peter Tröger � 7.7.09 00:14
Kommentar: Redraw state transition
diagram

drmaa-wg@ogf.org 18

minor

This attribute SHALL contain the minor version number.

drmaa-wg@ogf.org 19

6 Exceptions
All exceptions in specific bindings MUST contain a possibility to store and read a
textual description of the exception cause for the exception instance.
Language bindings MAY decide to derive all exceptions from given environmental
exception base class(es). Language bindings SHOULD replace exceptions with a
semantically equivalent native runtime environment exception whenever this is
appropriate.

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA
exceptions through class derivation. In this case it MAY also happen that new
exceptions are introduced for behavior aggregation. In this case, those exceptions
SHALL be marked as abstract, to prevent them from being thrown.

If the language supports the distinction between static (‘checked’) and runtime
(‘unchecked’) exceptions (like Java), all but the following exceptions must be
represented as checked exception:

• InternalException
• OutOfMemoryException
• InvalidArgumentException

If a destination language does not support the notion of exceptions (like ANSI C), the
language binding SHOULD map error conditions to an appropriate consistent
concept. A language binding MAY chose to model exceptions as numeric error code
return values, and return values as additional output parameter of the operation.
Such a language binding SHOULD specify numeric values for all DRMAA error
constants.

6.1 AuthorizationException

The user is not authorized to perform the given operation.

6.2 ConflictingAttributeValuesException

The value of this attribute conflicts with one or more previously set properties.

6.3 DefaultContactStringException

The DRMAA implementation could not use the default contact string to connect to
DRM system.

6.4 DeniedByDrmException

The DRM system rejected the job. The job will never be accepted due to DRM
configuration or job template settings.

6.5 DrmCommunicationException

Could not contact DRM system.

drmaa-wg@ogf.org 20

6.6 DrmsExitException

A problem was encountered while trying to exit the session.

6.7 DrmsInitException

A problem was encountered while trying to initialize the session.

6.8 ExitTimeoutException

The wait() or synchronize() method call on the Session interface returned before all
selected jobs entered the DONE or FAILED state.

6.9 InternalException

An unexpected or internal DRMAA error occurred, for example a system call failure.

6.10 InvalidArgumentException

A parameter value is fundamentally invalid, such as being of the wrong type or being
null.

6.11 InvalidAttributeFormatException

The value for the job template property is improperly formatted, such as a badly
formatted time stamp.

6.12 InvalidAttributeValueException

The value for the job template property is invalid.

6.13 InvalidContactStringException

The given contact string is not valid.

6.14 InvalidJobException

The job specified by the given object does not exist.

6.15 InvalidJobTemplateException

The job template is not valid. It was either created incorrectly, or it has already been
deleted.

6.16 NoActiveSessionException

The method call failed because there is no active session.

6.17 NoDefaultContactStringSelectedException

No default contact string was provided or selected. DRMAA requires the default
contact string to be selected when there is more than one possible contact string due
to multiple DRMAA implementations being present and available.

drmaa-wg@ogf.org 21

6.18 OutOfMemoryException

This exception can be thrown by any method at any time when the DRMAA
implementation has run out of free memory.

6.19 InconsistentStateException

The current job state does not allow the request state change.

6.20 TryLaterException

The DRMS rejected the operation, possibly due to excessive load. A retry attempt
may succeed, however.

6.21 UnsupportedAttributeException

The given job template attribute is not supported by the current DRMAA
implementation.

6.22 IllegalStateException

The JobInfo instance is not in the correct state for this kind of operation.

drmaa-wg@ogf.org 22

7 SessionManager interface

DRMAA supports the concept of sessions, which act as container for a list of either
machines or jobs.

Job sessions can be re-opened after they were closed. The re-opening of a session
MUST be possible on the machine where the job was originally created.
Implementations MIGHT also offer to re-open sessions on another machine. If jobs
terminate after closing a session, their termination information MUST be available
when the jobs original session is re-opened. The session name is generated by the
DRMAA implementation and can also be queried from the Session interface. Multiple
concurrent sessions are allowed.

7.1 drmsInfo

A DRM system identifier denotes a specific type of DRM system, e.g. Sun Grid
Engine. It allows the application the rely on implementation-specific attributes.

7.2 createJobSession

The createJobSession() creates a new JobSession object for the application, which
allows to submit, monitor and control a group of jobs. The method MUST do
whatever work is required to initialize a DRMAA job session for use, for example by
connecting the DRMAA library to a DRMS daemon.

The sessionName parameter denotes a specific job session to be re-opened. If a job
session with such a name was not created before, the method MUST throw an
InvalidArgumentException. If the provided name is an empty string or null , a new
job session MUST be created.

The contactString parameter is an implementation-dependent string that may be
used to specify which DRM system instance to use. A contactString represents a
specific installation of a specific DRM system, e.g. a Condor central manager
machine at a given IP address or a Sun Grid Engine ‘root’ and ‘cell’. The strings are
always implementation dependent and SHOULD NOT be interpreted by the
application. Contact strings need to be figured out by the application user manually
for every DRMS installation the application is executed upon. If contact is null or
emtpy, the default DRM system SHOULD be used, provided there is only one DRMS
available. If contact is null or empty, and more than one DRMAA implementation is
available, createJobSession() SHALL throw a
NoDefaultContactStringSelectedException or return a corresponding error code if
exceptions aren't supported.

In the case that a DRMAA library implementation needs to perform non-thread-safe
operations (like getHostByName() C library call), it SHOULD perform them in the
implementation of the createJobSession() operation, in order to ensure thread-safe
operations for all other job-related DRMAA methods.

 Peter Tröger � 29.9.09 15:54

 Peter Tröger � 6.7.09 23:11

 Peter Tröger � 6.7.09 23:11

Kommentar: TODO: Survey showed
many requests for:
- Job workflows (but only as add-on)

- Monitoring of jobs in the DRM system
not submitted by the DRMAA session
(has an security aspect)
- List the jobs in a queue

Kommentar: TODO: Survey showed
some interest in being able to submit jobs
to specific resources

Kommentar: TODO: #5876 – Extend
DRMAA by file transfer capabilities

drmaa-wg@ogf.org 23

Parameters
sessionName - implementation-dependent string that may be used to specify a job
session to be re-opened. If null or empty, a new job session is created.

contactString - implementation-dependent string that may be used to specify
which DRM system to use. If null or empty, the DRMAA implementation will select
the default DRM system if there is only one DRMS available.

7.3 closeJobSession

The closeJobSession() method MUST do whatever work is required to disengage
from the DRM system and finally persist the list of jobs in the session to some stable
storage. This method SHALL NOT affect any jobs in the session (e.g., queued and
running jobs remain queued and running). Any job template instances which have not
yet been deleted become invalid after closeJobSession() is called, even after a
subsequent call to createJobSession(). closeJobSession() SHOULD be called only
once, by only one of the threads. Additional calls to closeJobSession() beyond the
first SHOULD throw a NoActiveSessionException or return a corresponding error
code if exceptions aren't supported.

7.4 destroyJobSession

7.5 getJobSessions

7.6 createMonitoringSession

7.7 closeMonitoringSession

drmaa-wg@ogf.org 24

8 JobSession interface
The following chapter explains the set of constants, methods and attributes defined in
the JobSession interface. Every DRMAA JobSession object provides a container for
the jobs submitted by its runJob() resp. runBulkJobs() methods.

An application can open more than one DRMAA session at a time, but every job can
only belong to one session. Sessions (in terms of their job list) should be persisted
after closing the session through SessionManager.closeJobSession(), until they are
explicitly reaped through SessionManager.destroyJobSession().

The JobSession interface has explicit methods for creating and destroying job
template objects. Even though some object oriented programming languages might
prefer implicit object destruction mechanism instead of explicit cleanup calls, this
interface design reflects the close coupling of DRMAA to the underlying DRM
system. It also supports the implementation of object oriented DRMAA libraries
based on a DRMAA C library.

The interface provides one read-only attribute contact. It contains the contact string
used on creation of this instance through SessionManager, or the default contact
string if none was chosen,

8.1 createJobTemplate

The createJobTemplate() method SHALL return a new JobTemplate instance. The
job template is used to set the defining characteristics for jobs to be submitted. Once
the job template has been created, it should also be deleted (via
deleteJobTemplate()) when no longer needed. Failure to do so may result in a
memory leak.

Returns
The createJobTemplate() method SHALL return a blank JobTemplate instance.

8.2 deleteJobTemplate

The deleteJobTemplate() method is used to deallocate a job template, and SHALL
perform all necessary steps required to free all memory associated with the given
JobTemplate instance.
In languages where memory is not freed explicitly, e.g. languages that use garbage
collectors, this method SHALL perform all necessary steps required to prepare this
job template to be freed. In languages where finalizers are supported, the
implementation of this method MAY be empty.
This method SHALL have no effect on running jobs. This method MUST only work on
JobTemplate instances that were created with the createJobTemplate() method and
have not previously been deleted with the deleteJobTemplate() method and MUST
otherwise throw an InvalidJobTemplateException.

Parameters

drmaa-wg@ogf.org 25

jobTemplate - the JobTemplate instance to delete.

8.3 runJob

The runJob() method SHALL submit a job with attributes defined in the job template
given as a parameter. This method MUST only work on JobTemplate instances that
were created with the createJobTemplate() method and have not previously been
deleted with the deleteJobTemplate() method and MUST otherwise throw an
InvalidJobTemplateException.

Parameters
jobTemplate - the job template to be used to create the job.

Returns
The runJob() method SHOULD return a Job object that represents the job in the
underlying DRM system.

8.4 runBulkJobs

The runBulkJobs() method SHALL submit a set of parametric jobs, dependent on the
implied loop index, each with attributes defined in the given job template. Each job in
the set is identical except for its index. The first parametric job has an index equal to
beginIndex. The next job has an index equal to beginIndex + step, and so on. The
last job has an index equal to beginIndex + n * step, where n is equal to (endIndex –
beginIndex) / step. Note that the value of the last job's index may not be equal to
endIndex if the difference between beginIndex and endIndex is not evenly divisible
by step. The smallest valid value for beginIndex is 1. The largest valid value for
endIndex is language dependent. The beginIndex value must be less than or equal to
the endIndex value, and only positive index numbers are allowed. The index number
can be determined by the job in an implementation-specific fashion.
The JobTemplate interface defines a PARAMETRIC_INDEX placeholder for use in
specifying paths. This placeholder is used to represent the individual identifiers of the
tasks submitted through this method.
This method MUST only work on JobTemplate instances that were created by the
createJobTemplate() method and have not previously been deleted by the
deleteJobTemplate() or exit() method and MUST otherwise throw an
InvalidJobTemplateException.

Parameters
jobTemplate - the job template to be used to create the job.
beginIndex - the starting value for the loop index.
endIndex - the terminating value for the loop index.
step - the value by which to increment the loop index each iteration.

Returns

 Peter Tröger � 6.7.09 23:32

 Peter Tröger � 6.7.09 23:32

Kommentar: TODO: #5884 – apply
solution from GFD.133 here

Kommentar: TODO: #5884 – apply
solution from GFD.133 here

drmaa-wg@ogf.org 26

The runBulkJobs() method SHOULD return a list of Job objects, were each of them
represents a job in the underlying DRM system.
8.5 waitAny

This method SHALL wait for any of the session jobs to enter one of the given states.
If no jobs are active in the session, the call to waitAny() SHALL fail, throwing an
InvalidJobException. The timeout value SHALL be used to specify the desired
behavior when a result is not immediately available. The constant value
TIMEOUT_WAIT_FOREVER may be specified to wait indefinitely for a result. The
constant value TIMEOUT_NO_WAIT may be specified to return immediately.
Alternatively, a number of seconds may be specified to indicate how long to wait for a
result to become available. If the invocation exits on timeout, an
ExitTimeoutException SHALL be thrown or a corresponding error code returned if
exceptions aren't supported. The caller should check system time before and after
this call in order to be sure of how much time has passed.
To avoid thread race conditions in multi-threaded applications, the DRMAA
implementation user should explicitly synchronize this call with any other job
submission or control calls that may change the number of remote jobs.
In a multi-threaded environment with a waitAny(), only one of the active thread gets
the status change notification for a particular job, while the other threads continue
waiting. If there are no more queryable jobs left in the session, all remaining waiting
threads SHOULD fail with an InvalidJobException.
If thread A is waiting for a specific job with Job.wait(), and another thread, thread B,
waiting for that same job or with JobSession.waitAny(), receives notification that the
job has finished, thread A SHOULD fail with an InvalidJobException. At any time
during a call to waitAny(), if no jobs are in the session, the call to waitAny() SHALL
fail, throwing an InvalidJobException.
Parameters
jobStates - the job states to be waited for.
timeout - the maximum number of seconds to wait.

Returns
This method SHALL return the Job object for the job that reached one of the given
states.

Peter Tröger � 29.9.09 16:50

 Peter Tröger � 6.7.09 23:32

Kommentar: Fix description according to
new waitAnySTarted() /
waitAnyTerminated() model. Check
mailing list, Sept. 2nd 2009 for agreed
semantics.

Kommentar: TODO: #5879 – Solution
applied to GFD.133 needs to be reflected
also here.

drmaa-wg@ogf.org 27

9 JobTemplate interface
In order to define the attributes associated with a job, a DRMAA application uses the
JobTemplate interface. Instances of such templates are created via the active
JobSession implementation. A DRMAA application gets a JobTemplate from the
active JobSession instance, specifies in the template any required job parameters,
and then passes the template back to the DRMAA JobSession instance when
requesting that a job be executed. When finished, the DRMAA application SHOULD
call the JobSession::deleteJobTemplate() method to allow the underlying
implementation to free any resources bound to the JobTemplate instance.

9.1 Interface overview

A language binding specification MUST model the JobTemplate interface in the
following way:

In languages that do not support the notion of interfaces or objects, the job template
attributes SHOULD be modeled as constant parameters to generic getter and setter
routines. These routines SHOULD treat all attribute names and values as strings. In
the case of such a language, the attributeNames attribute SHOULD be modeled as a
getAttributeNames() routine that returns the names of the available attributes as a list
of strings which can be used with the generic getter and setter routines. See section
0 below.

The JobTemplate implementation MUST support the following exceptions for the
setter operations in case there is a concept of exceptions in the programming
language:

• InvalidAttributeValueException – The value is invalid for the job template
property, e.g. a startTime that is in the past.

• ConflictingAttributeValuesException – the attribute value conflicts with a
previously set attribute value.

For both getter and setter operations, the following exceptions MUST be supported in
case exceptions are part of the programming language:

• NoActiveSessionException
• DrmCommunicationException
• AuthorizationException
• OutOfMemoryException
• InternalException

In most cases, a DRMAA implementation will require that job templates be created
through the Session::createJobTemplate() method. In those cases, passing a
template created other than via this method to the Session::deleteJobTemplate(),
Session::runJob(), or Session::runBulkJobs() methods MUST result in an
InvalidJobTemplateException being thrown or a corresponding error code being
returned if exceptions are not supported.

 Peter Tröger � 31.1.09 00:53
Kommentar: TODO: #5881 – more
optional JT attributes to support resource
requirement formulation. Mostly solved by
JSDL. Important question according to
survey. Dan proposed a
“resourceRequest” attribute of type
“Dictionary”, treated as mandatory, or
maybe a “hardResourceRequest” vs.
“softResourceRequest”

drmaa-wg@ogf.org 28

A JobTemplate instance SHOULD be convertible to a string for printing. This
SHOULD be accomplished through whatever mechanism is most natural for the
implementation language. The resulting string MUST contain the values of all set
properties.

In the DRMAA job template concept, there is a distinction between mandatory,
optional and implementation-specific attributes. A language binding implementation
MUST include all DRMAA attributes described here, both required and optional. The
setter and getter implementations for optional attributes MUST in case throw
UnsupportedAttributeException. The service provider implementation SHOULD then
override the setters and getters for supported optional attributes with methods that
operate normally. In the case of a destination language that does not support the
notion of interfaces or objects, the generic getter and setter routines should throw
UnsupportedAttributeException when called with the name of an unknown or
unsupported attribute.

Generic getter / setter routines
In the case of a destination language that does not support the notion of interfaces or
objects, the JobTemplate interface SHOULD be modeled by a set of generic setter
and getter routines. These generic routines are as follows:

string getAttribute(string name)
 raises (DrmCommunicationException,
 AuthorizationException,
 NoActiveSessionException,
 OutOfMemoryException,
 InternalException,
 UnsupportedAttributeException);
};

This method SHALL return the string value of the specified attribute. The language
binding specification SHOULD consistently specify the string representation for non-
string data types. Valid input values are the strings returned by the
getAttributeNames() operation. An invalid attribute name leads to an
UnsupportedAttributeException.

stringlist getVectorAttribute(string name)
 raises (DrmCommunicationException,
 AuthorizationException,
 NoActiveSessionException,
 OutOfMemoryException,
 InternalException,
 UnsupportedAttributeException);
};

This method SHALL return the list of string values of the specified vector attribute. A
vector attribute is one which is prefixed with “v_” in the table in section Fehler!
Verweisquelle konnte nicht gefunden werden.. The language binding
specification SHOULD consistently specify the string representation for non-string
vector elements. Valid input values are the strings returned by the

drmaa-wg@ogf.org 29

getAttributeNames() operation. An invalid attribute name leads to an
UnsupportedAttributeException.

void setAttribute(string name, string value)
 raises (DrmCommunicationException,
 UnsupportedAttributeException,
 InvalidAttributeValueException,
 AuthorizationException,
 NoActiveSessionException,
 OutOfMemoryException,
 InternalException);
};

This method SHALL change the value of the specified attribute to the given value.
Valid input values for the name parameter are the strings returned by the
getAttributeNames() operation. An invalid attribute name leads to an
UnsupportedAttributeException. An invalid value for a particular attribute leads to an
InvalidAttributeValueException. The language binding specification SHOULD
consistently specify the string representation for non-string data types.

void setVectorAttribute(string name, StringList value)
 raises (DrmCommunicationException,
 UnsupportedAttributeException,
 InvalidAttributeValueException,
 AuthorizationException,
 NoActiveSessionException,
 OutOfMemoryException,
 InternalException);
};

This method SHALL replace the list of values of the specified vector attribute to the
given list of values. A vector attribute is one which is prefixed with “v_” in the table in
section Fehler! Verweisquelle konnte nicht gefunden werden.. Valid input values
for the name parameter are the strings returned by the getAttributeNames()
operation. An invalid attribute name leads to an UnsupportedAttributeException. An
invalid value for a particular attribute leads to an InvalidAttributeValueException. The
language binding specification SHOULD consistently specify the string
representation for non-string vector elements.

If a language binding uses this generic getter / setter approach, then it MUST enforce
the usage of the attribute names specification from section Fehler! Verweisquelle
konnte nicht gefunden werden. for all implementations, and all attributes listed in
section Fehler! Verweisquelle konnte nicht gefunden werden. MUST be
implemented.

9.2 Accessing implementation-specific attributes

A language binding MUST provide a means for accessing implementation-specific
attributes, as the getters and setters for such attributes are not defined by the
JobTemplate interface. This access method MUST be consistent for all attributes

drmaa-wg@ogf.org 30

and SHOULD be clearly described in the language binding specification. Some
destination languages MAY enable more than one access mechanism.

Some common approaches are:
Introspection approach
In order to access the getters and setters for implementation-specific attributes, the
developer must use the destination language's introspection mechanisms to locate
and then call the attributes' getters and setters at run time. In such a case, the list of
attribute names given by the attributeNames attribute MUST be names that are
meaningful to the destination language's introspection mechanism.

This approach makes it possible to write applications which are completely portable
across binding implementations, including previously unknown binding
implementations assuming that the naming of implementation-specific attributes is
consistent and/or predictable. A significant disadvantage to this approach is the
complexity of writing fully dynamic, introspection-based application logic.

Dynamic Loader Approach
In languages that support dynamic class loading, access to implementation-specific
attributes can be encapsulated in classes dedicated to accessing the job template
attributes of a specific binding implementation. After determining the binding
implementation in use, an application in such a language could dynamically load a
class that is capable of setting the implementation-specific attributes of the job
template.

An advantage of this approach is that within the scope of the dynamically loaded
class, the job template may be safely cast to the implementation type without creating
a run-time dependency on the implementation class. Within the class access to the
job template attributes is done directly using the job template implementation's
declared getters and setters. A disadvantage is that such a class is needed for each
binding implementation to be supported, and each such class is limited to operating
only on that specific binding implementation. Another disadvantage is that it creates
a compile-time dependency on all supported binding implementations, i.e. all
supported binding implementations must be available at the time the application is
compiled.

Discouraged approaches
The direct casting of a job template to the job template implementation class without
the use of dynamic class loading SHOULD NOT be used. Such casting, while
enabling direct access to all job template attribute getters and setters, creates a
compile-time and run-time dependency on all supported binding implementations, i.e.
such an application must be bundled with all binding implementations, even if it will
only be run on one of them.

The combination of job template attribute getters and setters with generic getters and
setters, where either set of accessors provides access to only a subset of the job
template implementations attributes, SHOULD NOT be used. A DRMAA binding
MUST provide consistent attribute access, with support for all attribute types

drmaa-wg@ogf.org 31

(required, optional and implementation-specific) in only one language-specific
method.

9.3 Constants

The JobTemplate interface defines a set of constants that are used in the context of
some of the attributes:

The HOME_DIRECTORY constant is a placeholder used to represent the user's
home directory when building paths for the workingDirectory, inputPath, outputPath,
and errorPath attributes.

The WORKING_DIRECTORY constant is a placeholder used to represent the
current working directory when building paths for the inputPath, outputPath, and
errorPath attributes.

The PARAMETRIC_INDEX constant is a placeholder used to represent the id of the
current parametric job subtask when building paths for the workingDirectory,
inputPath, outputPath, and errorPath attributes.

9.4 remoteCommand

This attribute describes the command to be executed on the remote host. In case this
parameter contains path information, it MUST be seen as relative to the execution
host file system and is therefore evaluated there. The attribute value SHOULD NOT
relate to binary file management or file staging activities.

9.5 args

This attribute contains the list of command-line arguments for the job to be executed.

9.6 jobSubmissionState

Defines the state of the job at submission time. For more information see section 5.2.

9.7 jobEnvironment

This attribute holds the environment variable values for the execution machine. The
values SHOULD override the remote environment values if there is a collision. If this
is not possible, the behavior is implementation dependent.

9.8 workingDirectory

This attribute specifies the directory where the job is executed. If the attribute is not
set, the behavior is implementation dependent. The attribute value MUST be
evaluated relative to the execution host's file system. The attribute value MAY
contain the HOME_DIRECTORY or PARAMETRIC_INDEX constant values as
placeholders. A HOME_DIRECTORY placeholder at the begin denotes the remaining
portion of the attribute value as a relative directory path resolved relative to the job
users home directory at the execution host. The PARAMETRIC_INDEX placeholder
MAY be used at any position within the attribute value in the case of parametric job

 Peter Tröger � 3.9.08 10:40

 Peter Tröger � 3.9.08 14:09

Kommentar: TODO: #2837 – more
placeholders. Was favored by most survey
participants. Needs research about
common placeholders in today’s DRM
systems.

Kommentar: TODO: #5873 – support for
the placeholders in more of the JT
attributes. Needs research about DRM
support. Some parts might be
implementable in the DRMAA library only.

drmaa-wg@ogf.org 32

templates and SHALL be substituted by the underlying DRM system with the
parametric jobs' index.
The workingDirectory MUST be specified in a syntax that is common at the host
where the job is executed. If the attribute is set and no placeholder is used, an
absolute directory specification is expected. If the attribute is set and the job was
submitted successfully and the directory does not exist, the job MUST enter the state
JobState.FAILED.

9.9 configurationName

DRMAA facilitates writing DRM-enabled applications even though the deployment
properties, in particular the configuration of the DRMS, cannot be known in advance.
Through the configurationName string attribute, a DRMAA application can specify
additional job needs that are to be mapped by the DRMAA implementation or DRM
system to DRMS-specific options. It is intended as non-programmatic extension of
DRMAA job submission capabilities. The interpretation of the configurationName job
template string attribute is implementation-specific, meaning that a DRMAA
implementation could even map any or all configuration names to nothing.
The order of precedence for DRMS configuration options produced by the
configurationName string attribute mapping versus those injected by the native
DRMS configuration is unspecified.

9.10 nativeOptions

This string attribute allows the DRMAA library user to pass DRMS-specific native
options during job submission. In contrast to the usage of predefined configuration
sets with the configurationName attribute, this attribute allows to pass direct DRMS-
specific options. As far as the DRMAA interface specification is concerned, the
nativeOptions string attribute is an implementation-defined string and is interpreted
by each DRMAA library in its specific way.

One MAY use DRM configuration facilities, the configurationName attribute or the
nativeOptions attribute at the same time. In this case, the nativeOptions attribute
SHOULD ultimately overrule other, even conflicting, configurations. Care SHOULD
be exercised to not change the job submission call semantics, pass options that
conflict the already set attributes, or violate the DRMAA API in any way.
Implementations are free to reject job templates with invalid native specifications.

9.11 email

This attribute holds a list of email addresses that is used to report the job completion
and status.

9.12 blockEmail

This Boolean parameter decides whether the sending of email is blocked by default
or not, regardless of the DRMS setting. If the parameter is TRUE, the sending of
email SHALL be blocked regardless of the DRMS setting. If the value is FALSE, the
sending of email SHALL be determined by the DRMS setting.

drmaa-wg@ogf.org 33

9.13 startTime

This attribute specifies the earliest time when the job MAY be eligible to be run. Date
and time are expressed as RFC822 conformant string.

9.14 jobName

A job name SHALL be comprised of alphanumeric and '_' characters. The DRMAA
implementation MAY truncate any client-provided job name to an implementation-
defined length that is at least 31 characters.

9.15 inputPath

Specifies the job's standard input as a path to a file. If this property is not explicitly set
in the job template, the job is started with an empty input stream, unless the named
configuration, native options, or a DRMS setting causes a source for the input stream
to be set. If this attribute is set, it specifies the network path for the job's input stream
file in the form:

[hostname]:file_path

If the transferFiles job template attribute is supported and has a value where the
FileTransferMode::inputStream attribute set to true, the input file SHOULD be fetched
by the underlying DRM system from the specified host, or from the submit host if no
hostname was specified.
If the transferFiles job template attribute is not supported or its value's
FileTransferMode::inputStream is set to false, then the input file is always expected
at the host where the job is executed, irrespective of whether a hostname was
specified.
The PARAMETRIC_INDEX placeholder can be used at any position for parametric
job templates and SHALL be substituted by the underlying DRM system with the
parametric job's index.
A HOME_DIRECTORY placeholder at the beginning of the attribute value denotes
the remaining portion as a relative file specification resolved relative to the job's
user's home directory at the host where the file is located.
A WORKING_DIRECTORY placeholder at the beginning of the attribute value
denotes the remaining portion as a relative file specification resolved relative to the
job's working directory at the host where the file is located.
The inputPath MUST be specified in a syntax that is common at the host where the
file is located.
If set, and the job were successfully submitted, and the file can't be read, the job
enters the state, JobState.FAILED.

9.16 outputPath

Specifies how to direct the job's standard output to a file. If this attribute is not
explicitly set in the job template, the destination of the job's output stream is not
defined, unless the named configuration, native options, or a DRMS setting causes a
destination for the output stream to be set. If this attribute is set, it specifies the
network path of the job's output stream in the form:

drmaa-wg@ogf.org 34

[hostname]:file_path

If the transferFiles job template attribute is supported and its value's
FileTransferMode::outputStream attribute is set to true, the output file SHALL be
transferred by the underlying DRM system to the specified host or to the submit host
if no hostname is specified.
If the transferFiles job template attribute is not supported or its value's
FileTransferMode::outputStream attribute is set to false, the output file SHALL be
kept at the host where the job is executed, irrespective of whether a hostname was
specified.
All output sent to the job's standard output stream SHALL be appended to that file. If
the file does not exist at the time the job is executed, the file SHALL first be created.
The PARAMETRIC_INDEX placeholder can be used at any position with parametric
job templates and SHALL be substituted by the underlying DRM system with the
parametric job's index.
A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion
as a relative file specification resolved relative to the job users home directory at the
host where the file is located.
A WORKING_DIRECTORY placeholder at the beginning denotes the remaining
portion as a relative file specification resolved relative to the jobs working directory at
the host where the file is located.
The outputPath MUST be specified in a syntax that is common at the host where the
file is located. If set and the job were successfully submitted and the file can't be
written before execution the job MUST enter the state JobState.FAILED.

9.17 errorPath

Specifies how to direct the jobs’ standard error to a file.
If not explicitly set in the job template, the destination of the job's error stream is not
defined unless the named configuration, native options, or a DRMS setting causes a
destination for the error stream to be set. If this attribute is set, it specifies the
network path of the jobs error stream file in the form:

[hostname]:file_path

If the transferFiles job template attribute is supported and it’s value's
FileTransferMode::errorStream attribute is set to true, the error file SHALL be
transferred by the underlying DRM system to the specified host or to the submit host
if no hostname is specified.
If the transferFiles job template attribute is not supported or it’s value's
FileTransferMode::errorStream is set to false, the error file is always kept at the host
where the job is executed irrespective of whether a hostname was specified.
All output sent to the job's standard error stream SHALL be appended to that file. If
the file does not exist at the time the job is executed, the file SHALL first be created.
The PARAMETRIC_INDEX placeholder can be used at any position for parametric
job templates and SHALL be substituted by the underlying DRM system with the
parametric jobs' index.

drmaa-wg@ogf.org 35

A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion
as a relative file specification, resolved relative to the job users home directory at the
host where the file is located.
A WORKING_DIRECTORY placeholder at the beginning denotes the remaining
portion as a relative file specification resolved relative to the jobs working directory at
the host where the file is located.
The errorPath MUST be specified in a syntax that is common at the host where the
file is located.
If set and the job were successfully submitted and the file can't be written before
execution, the job enters the state JobState.FAILED.

9.18 joinFiles

Specifies whether the error stream should be intermixed with the output stream. If not
explicitly set in the job template, this attribute defaults to false. If this attribute is set to
true, the underlying DRM system SHALL ignore the value of the errorPath attribute
and intermix the standard error stream with the standard output stream as specified
by the outputPath.

9.19 transferFiles

Specifies how to transfer files between hosts.
If this attribute is not explicitly set in the job template, the effect is the same as setting
the property to a FileTransferMode instance with all members set to false.
This attribute works in conjunction with the inputPath, outputPath and errorPath
attributes.

This attribute is optional. An implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

9.20 deadlineTime

Specifies a deadline after which the DRMS will abort the job. Date and time are
expressed as RFC822 conformant string.

This attribute is optional. An implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

9.21 hardWallclockTimeLimit

This attribute specifies when the job's wall clock time limit has been exceeded. An
implementation SHALL terminate a job that has exceeded its wall clock time limit.
Suspended time SHALL also be counted towards this limit.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

9.22 softWallClockTimeLimit

This attribute specifies an estimate as to how much wall clock time the job will need
to complete. Note that the suspended time is also counted towards this estimate.

drmaa-wg@ogf.org 36

This attribute is intended to assist the scheduler. If the time specified is insufficient,
the implementation MAY impose a scheduling penalty.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

9.23 hardRunDurationLimit

This attribute specifies how long the job MAY be in a running state before its limit has
been exceeded, and therefore is terminated by the DRMS.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

9.24 softRunDurationLimit

This attribute specifies an estimate as to how long the job will need to remain in a
running state to complete. This attribute is intended to assist the scheduler. If the
time specified is insufficient, the implementation MAY impose a scheduling penalty.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

9.25 attributeNames

This read-only attribute specifies the list of supported attribute names. This list
includes supported DRMAA reserved attribute names (both required and optional)
and implementation-specific attribute names. The listed attribute name MUST be of
a format that is meaningful to the destination language for use in introspection, if
supported, or with the getAttribute() and setAttribute() methods if introspection is not
supported. See section Fehler! Verweisquelle konnte nicht gefunden werden. for
a given names of the job template attributes.

drmaa-wg@ogf.org 37

10 Job interface
The following chapter explains the set of constants, methods and attributes defined in
the Job interface. Every job in the session is expressed by an own instance of the
Job interface. It allows to instruct the DRM system for a job status change, and to
query the status attributes of the job in the DRM system. Status values read from the
Job object SHOULD reflect the current status of the job in the DRM system at the
time of the call.

The job control functions allow modifying the status of the single job in the DRM
system. They SHALL return once the action has been acknowledged by the DRM
system, but MAY return before the action has been completed. Some DRMAA
implementations MAY allow this method to be used to control jobs submitted
externally to the DRMAA session, such as jobs submitted by other DRMAA sessions
in other DRMAA implementations or jobs submitted via native utilities. The behavior
is implementation-specific.
 To avoid thread races in multi-threaded applications, the DRMAA implementation
user should explicitly synchronize this call with any other call to the same object. This
MAY be already realized by the DRMAA implementation.

10.1 suspend

10.2 resume

10.3 hold

10.4 release

10.5 terminate

10.6 wait

10.7 getState

The DRMAA implementation MUST always get the status of the job from the DRM
system unless the status has already been determined to be FAILED or DONE and
the status has been successfully cached. It is up to the implementation to determine
whether this method is capable of operating on jobs submitted outside of the current
DRMAA session.

Returns
The getState() method SHALL return the job status, together with an implementation
specific sub state. This is intended to be a more detailed description of the current

Peter Tröger � 7.7.09 00:00
Kommentar: TODO: #2824 – Clarify
status query on reaped jobs

drmaa-wg@ogf.org 38

DRMAA job state, for example the specific kind of HOLD state (user-triggered,
system-triggered). Applications SHOULD NOT expect this information to be available
in all cases. Language bindings MUST allow the application to discard this
information (e.g. by passing a NULL value), and SHOULD use a generic reference
data type (e.g. *void or Object pointer). Implementations of the DRMAA API
SHOULD then define a DRMS-specific data structure for the sub-state information.

10.8 getInfo

TBD

drmaa-wg@ogf.org 39

11 JobInfo interface

TBD

Peter Tröger � 29.9.09 16:58
Kommentar: There was a user demand
for figuring out why a job remains in
queued state – is it only a lack of available
execution resources, or something else ?

drmaa-wg@ogf.org 40

12 MonitoringSession interface

The MonitoringSession interface in DRMAA supports the monitoring of execution
resources in the DRM system. This is distinct from the monitoring of jobs running in
the DRM system, which is covered by the Job and the JobInfo interface.

The MonitoringSession interface supports four basic units of monitoring:

• Properties of the DRM system as a whole (e.g. DRM system version number)
that are independent from the particular session resp. contact string

• Properties of the DRM system that depend on the current contact string
(e.g. list of machines in the currently accessed Sun Grid Engine cell)

• Properties of single machines available with the current contact string
(e.g. amount of physical memory in a chosen machine)

As with the JobInfo interface, the access to properties is organized through key-
value-pairs.

… TBD

drmaa-wg@ogf.org 41

13 Annex

14 DRMAAv2 JSDL Profile
TBD

15 Security Considerations

Security issues are not discussed in this document. The scheduling scenario
described here assumes that security is handled at the point of job
authorization/execution on a particular resource.

16 References

[OMG IDL] Object Management Group. Common Object Request Broker

Architecture: Core Specification, Chapter 3, March 2004
[RFC 2119] S. Bradner. RFC 2119 – Key words for use in RFCs to Indicate

Requirement Levels, March 1997
[IJGUC08] Peter Tröger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski.

Standardized Job Submission and Control in Cluster and Grid
Environments. In International Journal of Grid and Utility Computing
(IJGUC). 2008. ISSN 1741-847X

[GFD133] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner,
Andreas Haas, Bill Nitzberg, John Tollefsrud, and Peter Tröger.
Distributed Resource Management Application API Specification 1.0
(GFD.133). Grid Recommendation. Open Grid Forum, 2008.

17 Contributors

Peter Tröger
peter@troeger.eu

18 Acknowledgements

We are grateful to numerous colleagues for support and discussions on the topics
covered in this document, in particular (in alphabetical order, with apologies to
anybody we've missed) Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald
Böhme, Matthieu Cargnelli, Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul
Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume, Tim Harsch, Greg Hewgill,
Rayson Ho, Eduardo Huedo, Dieter Kranzmüller, Krzysztof Kurowski, Peter G. Lane,
Miron Livny, Ignacio M. Llorente, Martin v. Löwis, Andre Merzky, Ruben S. Montero,
Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Martin Sarachu,
Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain,
John Tollefsrud, Jose R. Valverde, and Peter Zhu.

drmaa-wg@ogf.org 42

19 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property
or other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any
effort to identify any such rights. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this specification can be obtained from
the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents
or patent applications, or other proprietary rights which may cover technology that
may be required to practice this recommendation. Please address the information to
the OGF Executive Director.

20 Disclaimer
This document and the information contained herein is provided on an “As Is” basis
and the OGF disclaims all warranties, express or implied, including but not limited to
any warranty that the use of the information herein will not infringe any rights or any
implied warranties of merchantability or fitness for a particular purpose.

21 Full Copyright Notice

Copyright (C) Open Grid Forum (2008). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing
the copyright notice or references to the OGF or other organizations, except as
needed for the purpose of developing Grid Recommendations in which case the
procedures for copyrights defined in the OGF Document process must be followed,
or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the
OGF or its successors or assignees.

